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Effectiveness of Computer-Assisted Instruction in 
Statistics: A Meta-Analysis

Giovanni W. Sosa, Dale E. Berger, Amanda T. Saw, and 
 Justin C. Mary

Claremont Graduate University

Although previous meta-analyses have documented the efficacy of computer-
assisted statistics instruction, the current study examined a range of specific 
features that presumably influence its effectiveness, such as the level of learner 
engagement, learner control, and the nature of feedback. In 45 experimental 
studies with a control condition, computer-assisted statistics instruction pro-
vided a meaningful average performance advantage (d = 0.33). Because of 
great methodological heterogeneity among the studies, the authors employed a 
conservative but appropriate mixed effects model to examine potential mod-
erator effects. The authors’ analyses revealed three statistically significant 
findings. Larger effects were reported in studies in which treatment groups 
received more instructional time than control groups, in studies that recruited 
graduate students as participants, and in studies employing an embedded 
assessment. A newly developed second order standardized mean effect size, 
ddiff, reveals that additional study characteristics may serve as meaningful mod-
erators. Tight experimental control is needed to assess the importance of spe-
cific instructional features in computer-assisted statistics instruction.

Keywords: classroom research, cognitive development, cognitive processes, 
computers and learning, ddiff, meta-analysis, statistics.

Computer-based educational tools have become pervasive in statistics educa-
tion (Hsu, 2003). The Multimedia Educational Repository for Learning and Online 
Teaching (MERLOT; www.merlot.org) now includes more than 300 distinct 
resources, identified by a search for statistics within Learning Materials. More 
broadly, a Google search of the term statistics tutorial generates well more than 
17,000 internet sites, reflecting a huge body of web-based statistics resources.

Computer-assisted statistics instruction has many potential benefits. First, com-
puterized exercises provide students with additional practice that can reinforce 
their understanding of the material (Gonzalez & Birch, 2000). Computer-assisted 
instruction may also allow students to exercise control over the pace at which 
information is presented (Frederickson, Reed, & Clifford, 2005; Gonzalez & 
Birch, 2000). Having some control over the learning process has the potential of 
making instructional tools more relevant to students; moreover, to the extent that 
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students feel that they have control over the learning process, learner control may 
also be conducive to increasing students’ engagement and expectations for suc-
cessful understanding of the material (Milheim & Martin, 1991). Practice with 
tasks and exercises that are relevant to students’ everyday life or are meaningful in 
a given discipline can enhance students’ understanding of statistical concepts 
(Larreamendy-Joerns, Leinhardt, & Correador, 2005; Schumm et al., 2002). This 
authenticity provides a context for understanding abstract statistical concepts, 
encouraging interactivity, and facilitating students’ ability to apply their knowl-
edge. Computer-based statistics tools that offer students control over how material 
is presented have the potential of increasing student engagement with course con-
tent (Larreamendy-Joerns et al., 2005).

Another benefit of computer-based statistics tools is the potential for providing 
effective feedback. Feedback that confronts misconceptions and promotes mindful 
processing of information can facilitate learning (Bangert-Drowns, Kulik, Kulik, 
& Morgan, 1991; Moreno, 2004; Moreno & Mayer, 2005; Timmerman & Kruepke, 
2006). Feedback can be corrective (indicate whether the user is accurate), be 
explanative (offer more in-depth reasoning), reinforce a correct response, or sup-
port self-regulated learning. Feedback may be immediate or delayed, specific or 
more general. Feedback has been found to be most powerful when it addresses 
misconceptions rather than merely dealing with a lack of knowledge and when the 
exercise or task complexity is low (Hattie & Timperley, 2007). For instance, 
Moreno and Mayer (2005) found that in an interactive game setting, guidance in 
the form of explanatory feedback improved learning and reduced misconceptions; 
however, merely having the users explain their responses was less effective.

Hattie and Timperley (2007) concluded that feedback is most effective when 
goals are clearly defined and feedback is highly related to attaining the goals in 
question. Feedback is further enhanced when it indicates success with current 
activities, includes information on what is understood and what is not, and guides 
the learner through activities and strategies needed to reach specified goals. Hence, 
effective feedback not only is based on monitoring progress toward the specified 
goal but also promotes effective learning strategies.

Learning goals should include promoting conceptual knowledge (i.e., statistical 
thinking and reasoning) in addition to procedural learning and using assessments 
to improve instruction, not merely to rank students (Garfield, 1994; Garfield & 
Chance, 2000). Garfield and Chance (2000) suggested multiple forms of assess-
ment, including minute papers, projects, and portfolios in addition to traditional 
forms such as quizzes and exams, to measure deeper conceptual understanding and 
to help students achieve learning goals. In addition, assessment that is incorporated 
into the learning activity may offer instructors the opportunity to evaluate student 
learning during the learning process itself and can offer students and faculty the 
feedback necessary to improve both student learning and instructional techniques 
(Kennedy, Brown, Draney, & Wilson, 2005). These issues related to goals and 
feedback highlight the importance of assessment methods, particularly in the 
domain of computer-assisted instruction where assessment can be built into the 
technological tools.

Computer-based statistics tools can be designed to offer the user immediate and 
response-specific feedback (Larreamendy-Joerns et al., 2005; Morris, 2001)—
something that is virtually impossible in large classroom settings. As with learner 
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control, the timing of feedback is inherently linked to a tool’s overall interactivity. 
Rapid feedback has proven helpful in making course content more meaningful to 
students not only by increasing motivation but also by allowing students to con-
front misconceptions quickly (Aberson, Berger, Healy, & Romero, 2003; Svinicki, 
1999). Effective tools offer learners response-specific feedback that is tailored to 
specific learning needs, and they provide learners with an appropriate amount of 
meaningful information.

Compared to classroom instruction, many computer-based tools require greater 
active engagement from students. The computational power afforded by such tools 
allows students to devote more time and energy toward mastering the conceptual, 
rather than procedural, facets of statistical concepts. Students may be asked to 
actively manipulate their learning environments by, for instance, altering param-
eters such as sample size, effect size, or p value. Computer-based tools are able to 
offer more examples and a wider array of examples than a student would normally 
be exposed to in the classroom. Interactivity and engagement in computer-based 
instruction can enhance statistical understanding by promoting deeper processing 
(Chi, 2009) and reducing cognitive load (Moreno & Mayer, 2007). By promoting 
individualized active learning in a structured environment, interactive technology 
can enable students to organize information so that it can be connected to their 
prior knowledge or existing schemata.

The many potential benefits that computer-based tools offer have spurred the 
development of an assortment of resources; however, abundance and diversity of 
computer-based resources challenge educators who wish to select tools that will 
be most beneficial. To address this issue, MERLOT established peer-review pro-
cedures meant to describe the strengths and weaknesses of individual computer-
based learning tools and to identify especially effective resources (Cafolla, 2006). 
Specifically, MERLOT reviewers evaluate educational resources based on three 
broad dimensions: (a) quality of content, (b) potential effectiveness as a teaching 
and learning tool, and (c) ease of use.

A peer-review process such as the one employed by MERLOT has the potential 
to help educators and students sort through the many existing tools to identify 
those best suited for their needs. However, subjective ratings are not equivalent to 
an empirical outcome evaluation. For instance, Jolicoeur and Berger (1986) found 
that experts showed surprisingly low interrater reliability in their judgments of the 
quality of educational software. In a subsequent study, Jolicoeur and Berger 
(1988a, 1988b) used random assignment with control conditions to test the effec-
tiveness of six computer-based educational programs. At the conclusion of the 
study, both teachers and students judged the educational effectiveness of each 
software package. These subjective measures of perceived educational effective-
ness were poorly correlated with actual educational effectiveness. Thus, although 
subjective ratings may be helpful in describing and classifying an assortment of 
computer-based tools, empirical evaluations are necessary to establish actual 
effectiveness.

A meta-analysis reported by the U.S. Department of Education, Office of 
Planning, Evaluation, and Policy Development (2009) suggests that in general 
online instruction can be more beneficial than traditional face-to-face instruction 
for both K–12 students and older learners across a range of learning domains. 
Based on 51 effect sizes, this meta-analysis found the overall mean effect size d, 
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the number of standard deviations the treatment mean exceeds the control mean, 
to be 0.24, favoring the use of online learning. Meta-analyses by James Kulik and 
his colleagues (C. Kulik & Kulik, 1991; C. Kulik, Kulik, & Shwalb, 1986; J. Kulik, 
2002; J. Kulik & Kulik, 1987) documented the effectiveness of computer-based 
instruction specifically in mathematics over the span of two decades. Their find-
ings consistently indicate that students using computer-based tools outperform 
students receiving only lecture-based instruction. J. Kulik (2002) estimated that 
across 200 studies the overall mean effect size d is 0.30. If the underlying distribu-
tions are normally distributed, an effect size this large means that the performance 
of the average student receiving computer-based instruction in mathematics 
exceeds the performance of 62% of students receiving lecture-based instruction. 
Although such an effect size may be considered small according to Cohen’s (1977) 
conventions, Slavin (1990) argued that in an educational context an effect size of 
0.25 or greater has practical significance. Thus, Kulik’s findings serve to confirm 
that computer-based tools can effectively contribute to learning, at least in the field 
of mathematics.

The evidence for the effectiveness of computer-based tools in teaching statistics 
appears to be at least as strong as in the broader field of mathematics. Hsu (2003) 
identified 25 empirical studies published between 1986 and 2002 that examined 
the effectiveness of computer-assisted instruction in statistics. She found an 
impressive average effect size of 0.43. More importantly, however, her study 
revealed potential moderating variables. She found that computer-based tools 
described as drill and practice resources (tools that present users with a set of test 
questions or practice problems that need to be completed in a specified order) 
produced the largest effects. She also found that instructor-made programs were 
more effective than commercially available programs. Similarly, Schenker (2007) 
identified 46 empirical studies examining the effectiveness of technology used in 
statistics instruction. Schenker obtained a mean effect size of 0.24. In examining 
the individual effect sizes, he found drill and practice programs to be the only 
technology type significantly associated with the apparent advantage for com-
puter-assisted instruction. Significantly larger effects were also found among stud-
ies utilizing control groups that received no instruction and studies that examined 
the effectiveness of computer-assisted instruction in the context of math courses. 
On the other hand, Schenker found that online learning tools yielded lower 
achievement outcomes when compared to the other technology types.

Unlike Hsu (2003), Schenker (2007) assigned some studies to multiple technol-
ogy categories (i.e., a given study could be designated as both a drill and practice 
tool and a tutorial), confounding the comparisons across technology types. A 
related issue is the overlap among identified technology types. Hsu and Schenker 
identified seven and eight different technology types, respectively, with varying 
degrees of overlap in the conceptualization of these tools. For instance, Schenker 
made a distinction between online learning and technology-enhanced lectures; 
although the former are described as online learning environments that offer stu-
dents access to materials and web-based resources such as videos, images, and 
sounds, the latter are described as offering students access to similar multimedia 
resources. Redundancy between identified technology types complicates assess-
ment of the effects of different types of tools. An alternative is to use broader  
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categories that reduce overlap and provide a larger number of studies within cat-
egories. For example, most technology tools for teaching statistics can be catego-
rized as stand-alone tutorials, number crunchers, or communication tools. 
Stand-alone tools are characterized by tutorials or exercises that students can com-
plete on their own with little or no support from an instructor (e.g., http://wise.cgu.
edu). Number crunchers are computational aids, such as SPSS or Minitab. 
Communication tools include class support systems such as Blackboard or Sakai. 
Although some evidence exists regarding the benefits of specific technological 
tools, more work is needed to elucidate our understanding of this matter.

Another limitation of previous meta-analytic work is that learner-centered 
aspects, such as student engagement, student control, and the nature of feedback, 
were not explored. The literature cited earlier indicates that such features are crit-
ical to facilitating the learning process and promoting the development of critical 
thinking skills (Lovett & Greenhouse, 2000; Mills, 2002; Svinicki, 1999). Little 
empirical work has examined the direct impact that such features of computer-
assisted instruction have on the learning of statistical concepts.

The Current Study

The meta-analyses by Hsu (2003) and Schenker (2007) clearly established that 
computer-based tools can be effective in statistics instruction. However, these 
reviews did not focus attention on aspects of computer-based tools that are most 
closely associated with learning and achievement outcomes. The current study 
extends previous work by giving attention to additional attributes that could 
account for differences in effectiveness, such as different technology types, student 
engagement, student control over the learning process, and the nature of feedback.

Method

Search Procedure

The goal of the literature search was to identify all studies that reported an 
empirical outcome evaluation of computer-assisted instruction in statistics in com-
parison to a control condition. We searched the following databases: (a) Educational 
Resources Information Center, (b) ProQuest Digital Dissertations, (c) Ingenta, (d) 
OmniFile, and (e) PsycINFO. Our search phrases included various terms coupled 
with the keyword statistics. These terms included computer, computer-based, 
computer-assisted, distance learning, distance education, web instruction, tuto-
rial, simulation, technology, internet, applet, and software. In addition, the key-
word effectiveness was added to each of the aforementioned phrases; this last 
procedure was repeated with the keywords evaluation, assessment, and perform-
ance. That is, we searched every combination of the term statistics with one of the 
technology words (e.g., computer) and one of the outcome terms (e.g., evaluation). 
For instance, our initial search was statistics and computer and evaluation. We 
also searched the Journal of Statistics Education and the studies used by Hsu 
(2003) and Schenker (2007) in their meta-analyses. We first identified potential 
studies by reading through all titles and abstracts resulting from our searches. After 
a potential study was identified, the full body of the article was examined to deter-
mine whether the study met our inclusion criteria.
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Studies were included only if they met all of the following criteria: (a) they 
assessed the effectiveness of computer-based instructional tools in statistics,  
(b) they evaluated effectiveness based on objective performance or learning meas-
ures (i.e., test scores), (c) they provided comparison data from a lecture-based 
control group receiving instruction in statistics (thus, simple pre–post studies, 
studies in which all groups were exposed to computer-based tools, and studies in 
which the control group did not receive instruction were excluded), (d) the control 
group did not receive any form of computer-assisted instruction, (e) they provided 
sufficient information to calculate an effect size, and (f) they provided enough 
information for the authors to be able to rate the studies with regard to specific 
learner-centered features. One article (Athey, 1987) described two unique studies 
with different participants—these studies were coded individually. Other articles 
with multiple studies employed the same treatment and/or control participants 
across studies. In such cases, data were pooled to generate a single effect size 
estimate. This resulted in a total of 45 unique studies that met our inclusion criteria.

Coding

Bibliographic information. Bibliographic information was coded as follows: 
(a) study ID number, (b) complete American Psychological Association (APA) 
citation, (c) type of publication report (e.g., journal article, conference presenta-
tion, or doctoral dissertation), and (d) the year of publication.

Sample descriptors. Descriptors of the sample were coded as follows: (a) academic 
level of participants (high school, college, or graduate students), (b) whether par-
ticipants assigned to the computer-assisted instruction group possessed any formal 
training in statistics prior to the intervention, (c) the treatment group sample size 
at the start and end of the study, and (d) the control group sample size at the start 
and end of the study.

Research design descriptors. Several design features were coded dichotomously. 
First, we coded the unit of assignment to conditions. In some cases, participants 
were assigned individually to treatment groups; in other cases, entire classrooms 
were assigned to treatment conditions. Second, we coded whether assignment was 
random or not random. Third, we coded whether the equivalence of the groups on 
the learning or performance measure of interest was assessed at pretest. Last, we 
documented whether the comparison between groups used statistical control of 
any potential covariates (e.g., GPA or mathematics ability).

Treatment descriptors. We coded multiple features of the computer-based technol-
ogy and its implementation. One feature we coded was whether the computer-
based tool was used to replace or only supplement classroom-based instruction, 
that is, whether the tool replaced activities of the instructor or whether it was used 
to augment lecture-based instruction. Another feature we coded was the number of 
sessions during which participants were exposed to the computer-based tool; in 
some studies participants utilized a tool on a single occasion, whereas in other 
studies they used a tool on multiple occasions. In addition, we coded whether the 
tool was implemented in the context of a distance education course, and we coded 
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whether the tool was produced commercially (e.g., SPSS) or developed by the 
researcher or instructor.

We also examined the issue of differential exposure to statistics instruction 
between the treatment and control groups. We found that most studies made a care-
ful effort to ensure that the two groups received an equal amount of instruction by 
controlling the number of hours or sessions. However, we identified six studies in 
which it was clear that the computer-instruction group received more overall 
instruction than did the control group. Last, we also coded for the type of outcome 
assessment used in studies. Some studies employed an embedded assessment 
approach in which the target items were incorporated into a broader assessment 
(e.g., midterm or final exam). Others crafted an assessment tool entirely composed 
of target items and specifically developed for the study in question. Yet other stud-
ies had students in both groups take the final exam that was similar, if not identical, 
to the one normally used in lecture-only courses. Finally, some studies simply 
compared the two groups on their final course grade.

As noted earlier, computer-based instruction potentially can enhance individual 
engagement in processing information by promoting interactivity, allowing stu-
dents to control the pace of the interaction, requiring thoughtful responses, and 
providing rapid individualized feedback. These factors have been shown to be 
important in many learning contexts (Chi, 2009; Halpern & Hakel, 2003; Lovett 
& Greenhouse, 2000). To assess the extent to which the computer-based instruc-
tion provided these features, three authors independently rated specific attributes 
on a 0–4 scale for each of the 45 studies in our meta-analysis.

With respect to the interactivity of the computer-based tool, we rated three 
specific attributes. Raters could also abstain from committing to a value if they felt 
that the study in question lacked sufficient information to make such a determina-
tion. First, we rated the extent to which the computer-based tool required thought-
ful responses. Next, we rated the extent to which the user exercised control over 
the pace of the learning process. Last, we rated the extent to which the tool engaged 
active learning; that is, the degree to which the tool was cognitively engaging. 
With respect to the nature of feedback provided by the tool, we rated two attributes. 
First, we rated the extent to which the explanations or feedback stemming from the 
tool were specific to individual learners’ responses (i.e., targeted feedback). 
Second, we rated the immediacy of the feedback that we perceived to be conducive 
to learning. In regard to the sources of instructional content, we rated the extent to 
which the learning process was dependent on instructor involvement, the extent to 
which the learning process was dependent on interactions among students, and the 
extent to which the computer-based tool contributed to instruction beyond the 
instructor or student–student interactions.

In addition, two authors independently rated (a) the complexity of the statistical 
concepts presented by the computer-based tools, (b) the breadth or range of the 
statistical topics included in the computer-based instruction, and (c) the extent to 
which the computer-based tool served as a simulation or an interactive program 
that allowed students to manipulate information. Complexity was rated on a 0–4 
scale. Lower ratings denoted computer-based tools that were calculation based or 
focused on descriptive information, whereas higher ratings denoted tools that 
focused on understanding concepts such as hypothesis testing or inferential statis-
tical procedures. Breadth was rated on a 1–4 scale. Lower ratings were assigned to 
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studies that described computer-assisted instruction that focused on only one or 
two topics; on the other hand, higher ratings were assigned to studies describing 
instruction that covered a wide range of topics from basic descriptive statistics to 
advanced inferential statistics (e.g., hierarchical regression and statistical power). 
The extent to which a computer-based tool served as a simulation was rated on a 
0–2 scale, with higher ratings denoting highly interactive tools that allowed stu-
dents to manipulate and interact more extensively with simulations.

To assess interrater reliability of subjective ratings, we computed a two-way 
mixed model intraclass correlation (ICC) based on ratings provided by two or 
more authors (Shrout & Fleiss, 1979); this analysis was conducted for each of the 
rated attributes. These ICCs ranged from .80 to 1.0 (average measures) for each 
evaluated attribute, justifying the use of an average rating across the raters for each 
attribute to be used in analyses of potential moderating effects.

Last, we examined differences among three broad categories of computer-
based tools: (a) stand-alone tools or tutorials, (b) number crunchers, and (c) com-
munication-based instructional tools. Stand-alone tools or tutorials are designed to 
guide the user through the learning process without the need of an instructor or 
other third party. Examples of such tools are tutorials offered by the Web Interface 
for Statistics Education website (http://wise.cgu.edu) and documented in Aberson 
et al. (2003; Aberson, Berger, Healy, Kyle, & Romero, 2000; Aberson, Berger, 
Healy, & Romero, 2002). Number crunchers refer to tools that allow users to 
manipulate or analyze data (e.g., SPSS, STATA). In contrast to stand-alone tools, 
number crunchers do not offer conceptual or theoretically based instruction and 
are not designed to take the place of the instructor. Instead, they operate as 
advanced calculators to provide users with computations and statistical output. 
Although they may provide some instruction through help menus, they require the 
user to have the knowledge necessary to select an appropriate statistical technique 
and the ability to interpret the resulting output. Communication-based instruc-
tional tools refer to computer-based resources through which instructors can inter-
act with students (e.g., e-mail, listserver, or a website for a class). For instance, a 
distance education course may have a website that, in addition to allowing students 
to download readings and lecture materials, also offers users access to a discussion 
board or chat sessions. Other examples of communication-based instructional 
tools are keypads or clickers that allow instructors to pose questions and receive 
individual feedback from students during a class session. These tools function as 
electronic media by which the instructor and students can interact. The three 
authors coding for these characteristics obtained a very high level of agreement 
(single measure ICC = .98).

Effect size measures. All data needed for calculation of effect sizes were recorded 
(i.e., means, standard deviations, significance test results). In addition to recording 
effect size–related information, the first author also recorded a confidence rating 
for each study’s estimated effect size. Specifically, he rated the extent to which 
each effect size was estimated, based on a 1 (highly estimated, minimal data pro-
vided) to 5 (sufficient data provided for computation) scale. With the exception of 
one study that offered only significance test results and sample sizes (score of 2), 
all studies received a score of 3 or higher. All effect sizes were computed as stand-
ardized mean difference effect sizes (d). Several studies failed to report mean and 
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standard deviations and instead included only significance test levels and sample 
sizes. We converted such data into standardized mean difference effect sizes using 
formulas provided by Lipsey and Wilson (2001).

Standardized mean difference effect sizes are known to be upwardly biased 
when based on small sample sizes (Lipsey & Wilson, 2001). Therefore, we 
employed Hedges’s (1981) correction for this bias, resulting in what is referred to 
as the unbiased effect size. To compute the unbiased effect size, the following 
formula was applied to each obtained effect size,

ES ′sm = [1 – (3 / (4N – 9))] ESsm,

where N represents the total sample size and ESsm represents the unadjusted stan-
dardized mean difference effect size. All subsequent descriptions of effect sizes, 
standard errors, and inverse variance weights use the unbiased effect size.

Analysis Strategy: Homogeneity Analysis Across the  
Entire Distribution of Effect Sizes

There are two contrasting approaches to estimating population parameters and 
examining the homogeneity across the distribution of effect sizes: the fixed effects 
model and the random effects model. The fixed effects model assumes that each 
effect size from all studies included in a meta-analysis serves as an estimate of a 
single population effect, with participant-level sampling error that stems from ran-
dom differences between participants (Borenstein, Hedges, Higgins, & Rothstein, 
2009; Hedges, 1994; Lipsey & Wilson, 2001). In contrast, the random effects 
model reflects the perspective that the included studies estimate multiple popula-
tion effects. Thus, a random effects model assumes that each effect size serves as 
an estimate of a true population effect with error that stems from participant-level 
sampling error (as in the fixed effects model) as well as from random study-level 
differences reflecting variations in study settings, procedures, measures, and so on. 
Although participant-level sampling error has a variance equal to the observed 
within study variance, error stemming from random study-level differences has a 
variance equal to a between-studies variance component (i.e., τ2) that reflects the 
variance between the multiple population effects (for a more thorough conceptual 
and computational discussion, see Borenstein et al., 2009).

In a fixed effects model, individual participants serve as the sampling units; in a 
random effects model, however, individual studies serve as the sampling units. 
Consequently, in a fixed effects model, generalizability is limited only to other 
participants who could have been recruited for the specific type of study docu-
mented by the meta-analysis (Rosenthal, 1995). In contrast, findings from a random 
effects approach can be generalized to any study belonging to the same population 
of studies from which effect sizes were obtained (Hedges & Pigott, 2004). Although 
improving generalizability, the drawback of the random effects model is a reduction 
in statistical power, largely the result of including the between-studies variance 
component, τ2, because this component is added to each of the variances in the 
obtained effect sizes (Borenstein et al., 2009; Hedges & Pigott, 2004; Lipsey & 
Wilson, 2001). Although we report both fixed and random effects parameter esti-
mates, our focus is on findings stemming from the random effects analyses because 
of the high degree of variability among the included studies along various relevant 
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study characteristics (e.g., nature of technology, experimental settings, measures). 
The random effects model also allows us to generalize our findings to the entire 
population of studies that have been conducted in this area of research.

Results

Table 1 presents summary statistics for both fixed and random effects models. 
We identified effect sizes from two studies as extreme values (d = 2.12 and d = 
–0.91). Rather than eliminating them from the analysis, we Winsorized them (cf. 
Lipsey & Wilson, 2001) by recoding each value to a more moderate value, namely, 
the second most extreme value in the corresponding tail of the distribution (1.41 
and –0.38, respectively). In line with Lipsey and Wilson’s (2001) recommenda-
tion, we recalculated each effect’s corresponding standard error and inverse vari-
ance weight. All findings reported hereafter are based on these Winsorized values. 
The estimated weighted mean effect size of the 45 studies for the fixed effects 
model is 0.13, whereas that of the random effects model is 0.33. The difference in 
the magnitude of the mean effect size between the two analytical approaches 
reflects the lower weight that a random effects approach places on large sample 
sizes (Borenstein et al., 2009). The estimated random effects mean effect size 
estimate is clearly larger than its corresponding fixed effects estimate for these 
studies; however, the corresponding confidence interval is wider (random effects 
CI.95 = 0.20 ≤ µ ≤ 0.46 vs. fixed effects CI.95 = 0.09 ≤ µ ≤ 0.17, respectively).

We further examined the computed mean effect via a coefficient of robustness 
(CR; Rosenthal, 1995). The CR reflects the homogeneity of the obtained effects 
(greater homogeneity is associated with a larger CR) and the consistency in the 
directionality of the result (i.e., the greater the proportion of positive effects in a 
distribution, the larger the resulting CR). A CR is defined simply as the mean effect 
size divided by the standard deviation of the effect sizes (Rosenthal, 1995). 
According to this index, the fixed effects mean effect size shows slightly greater 
robustness (0.13 / 0.31 = 0.42) than does the random effects mean effect size (0.33 
/ 0.94 = 0.35). This indicates that the effect sizes stemming from a fixed effects 
model are slightly more consistently positive, and homogenous, than are those 
stemming from a random effects analysis. Although no data-based benchmark 
exists for the identification of meaningful CRs, one suggested threshold is a CR of 
0.71 (R. Rosenthal, personal communication, April 18, 2009). Thus, although 75% 
of our effects are positive and the confidence interval limits are greater than zero, 
the degree of heterogeneity among the effects is substantial and suggests limited 
convergence among the findings.

As with any meta-analysis, a legitimate concern is whether the magnitude of 
our estimated effect size is reflective of all the empirical work, unpublished as well 
as published, that has compared computer and lecture-based statistics instruction. 
To address this concern, we computed a fail-safe N (Orwin, 1983; Rosenthal, 
1979) to determine the number of undiscovered studies with an effect size of zero 
that would need to exist to reduce the random effects mean effect size from 0.33 
to 0.10. We determined that it would take 104 additional studies with an effect size 
of zero to reduce our estimated effect size to 0.10. Moreover, it would take 254 
additional studies with an effect size of zero to reduce the mean effect size from 
0.33 to 0.05.
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Figure 1 shows the distribution of the 45 un-Winsorized effect sizes. As sug-
gested by the CR reported earlier, homogeneity analysis of the effects revealed that 
the observed differences between the effect sizes are greater than one would expect 
based on sampling error alone if the effect sizes were computed from groups of 
participants who were all selected randomly from the same population, Q(44) = 
216.09, p < .0001. Such heterogeneity indicates that the fixed effects model may 
not be appropriate; it suggests that weighting effect sizes by participant-level sam-
pling error alone is not enough to fully characterize the amount of observed vari-
ability among the effects as estimates of a single population mean effect size 
(Lipsey & Wilson, 2001). Thus, our findings indicate that all effect sizes do not 
estimate the same single population mean.

Heterogeneity and Between-Subgroup Analysis

Three different types of models have been used to analyze heterogeneous effect 
size distributions: (a) fixed effects models, (b) random effects models, and (c) 
mixed effects models. Under a fixed effects model, the analyst continues to assume 
that the variability among effect sizes is primarily because of random variation 
associated with participant-level sampling error. Any excess variability underlying 
the observed heterogeneity is viewed as systematic; that is, it can be accounted for 
by moderator variables (Lipsey & Wilson, 2001). This approach provides the 
greatest statistical power (i.e., it is more likely to identify statistically significant 
moderators).

TABLE 1
Statistical summary for performance scores

Number of studies 45
Total number of students 9,639
Median number of students 74
Unweighted mean d 0.37
Unweighted median d 0.33
Proportion d > 0.00 0.76
Minimum unweighted d −0.38
Maximum unweighted d 1.41
Fixed effects (weighted)
  Mean d 0.13
  Standard deviation 0.31
  Standard error 0.02
  95% confidence interval 0.09 to 0.17
  Robustness (M/SD) 0.42
Random effects (weighted)
  Mean d 0.33
  Standard deviation 0.94
  Standard error 0.06
  95% confidence interval 0.20 to 0.46
  Robustness (M/SD) 0.35

Note. These findings reflect the Winsorizing of one outlier on each end of the distribution.

 at Claremont Colleges Library on March 26, 2011http://rer.aera.netDownloaded from 

http://rer.aera.net


108

Stem Leaf

2.1 2

2.0

1.9

1.8

1.7

1.6

1.5

1.4 1, 1

1.3

1.2

1.1

1.0

.9 3, 4

.8 8

.7 6, 8, 9, 9

.6 5, 8, 9

.5 2, 6, 9

.4 0, 5

.3 3, 4, 7, 9, 9

.2 1, 2

.1 0, 2, 4, 7, 8

.0 2, 2, 6, 7, 9

-.0 4, 5, 7, 7, 9

-.1

-.2 5, 5, 7,

-.3 8

-.4

-.5

-.6

-.7

-.8

-.9 3

FIGURE 1. Stem and leaf display of unweighted effect size ds for the 45 studies of 
computer-assisted instruction in statistics. Effect size ds reflect Hedges’ (1981) 
correction and were Winsorized for analyses.
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In contrast, the random effects model views heterogeneity as stemming exclu-
sively from random differences among studies (e.g., variations in procedures and 
settings). A meta-analyst adopting a random effects model for a heterogeneous 
distribution will not proceed to identify systematic differences between effect sizes 
(i.e., moderator analysis) because the excess variability among effect sizes within 
this model is attributed solely to random—rather than systematic—differences 
between studies (Lipsey & Wilson, 2001).

A third approach to the analysis of a heterogeneous distribution is the mixed 
effects model. In a mixed effects model, as in a random effects model, the sampling 
units are not the individual participants but rather the individual studies identified 
by the analyst. However, the mixed effects approach assumes that the variance 
beyond sampling error because of participants can be accounted for by both mod-
erators (as in a fixed effects model) and random study-level differences (as in the 
random effects approach; Hedges & Pigott, 2004; Lipsey & Wilson, 2001). The 
benefit of a mixed effects model is that findings can be generalized to any study 
belonging to the same population of studies from which effect sizes were obtained 
(Hedges & Pigott, 2004). The drawback to this approach, however, is reduced 
statistical power compared to a fixed effects model (Hedges & Pigott, 2004; Lipsey 
& Wilson, 2001).

Given the diversity in the types of applications employed by the identified set 
of studies, along with the rapid growth of new applications, we anticipate that 
computer-assisted instruction will continue to encompass a highly diverse range 
of applications. Because of this diversity among studies, we chose a mixed effects 
model as the most appropriate method by which to examine the presence of poten-
tial moderators. We used a noniterative method of moments approach to estimate 
the between-studies variance component (Borenstein et al., 2009; Lipsey & 
Wilson, 2001). Analyses were conducted with SPSS macros developed by Wilson 
(2005; see http://mason.gmu.edu/~dwilsonb/ma.html).

Moderator Analyses With Categorical Study Descriptors: The Utility of ddiff

After finding that only a single study recruited high school students, we dichot-
omized our index of academic level to reflect studies that included undergraduate 
(n = 29) or graduate (n = 10) student participants. In addition, because many stud-
ies simply reported that the treatment group used the computer-based tool through-
out the academic term without specifying an exact number of sessions, we 
dichotomized our index of the number of sessions during which participants uti-
lized a computer-assisted tool into one session versus two or more sessions.

Findings stemming from the mixed effects moderator analyses for 24 categorical 
variables measuring a wide range of study characteristics are summarized in Table 2. 
In addition to indicating the average weighted standardized mean effect size (d) for 
each subgroup, Table 2 presents the 95% confidence intervals for each effect. Table 2 
also shows p values for the comparisons between subgroups across each of the exam-
ined study characteristics. Although a p value serves as an informative index of statis-
tical differences between groups, it clearly confounds two sources of information: 
sample size and effect size (Borenstein et al., 2009; Wilkinson & the Task Force on 
Statistical Inference, 1999). Awareness of this limitation has spawned strong recom-
mendations that effect sizes be reported as standard practice (e.g., APA, 2001). Indeed, 
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effect size indices—unlike p values—drive conclusions we make about the strength of 
the relationship among variables, in both primary and meta-analytic studies. However, 
despite the recognition that p values are inadequate measures of practically significant 
relationships among variables, and despite the recognition that effect size indices 
reveal meaningful information about the magnitude of study effects, meta-analyses 
continue to rely on p values to identify moderator variables. Although the meta-ana-
lytic approach has helped to reduce an overreliance on p values, meta-analysts 
typically identify subgroup differences (i.e., moderator variables) on the basis of the 
resulting p values rather than effect sizes.

To measure the strength of the relationship between study characteristics and 
the magnitude of the effects, we also report ddiff, a new index that operates as a 
second-order standardized mean effect size (see Table 2). The computation of this 
index is identical to the computation of a standardized mean effect size, except that 
it is based on study-level characteristics. As such, it is defined as,
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index have already been adjusted to reflect the corresponding between-studies vari-
ance component, τ2; thus, this index can easily be used with both fixed and mixed 
effects models. One benefit of ddiff is that it avoids the capitalization of chance that is 
inherent in conducting multiple comparisons relying on p values (Lipsey & Wilson, 
2001). Another benefit of this index is that it can be interpreted in much the same 
way that one would interpret any standardized mean effect size—it characterizes the 
number of standard deviation units that separate the mean effects of the subgroups 
under comparison. Thus, ddiff can be interpreted as a measure of practically signifi-
cant differences between the subgroups under comparison. Because the magnitude 
of this index is not driven by the number of participants or the number of included 
studies, ddiff provides useful alternative information for identifying moderator vari-
ables. As is illustrated in Table 2, we report ddiff along with a corresponding 95% 
confidence interval for each of our categorical variables.

More study time. Studies where treatment groups devoted more overall time for 
instruction compared to their control groups showed an average d = 0.97, an effect 
statistically superior to the average d = 0.23 found for studies where treatment and 
control groups received an equal amount of instruction, Q(1) = 18.53, p < .001. 
Assuming normal distributions for student performance within conditions, the confi-
dence interval (CI.95 = 0.66 ≤ µ ≤ 1.29) indicates that it is highly likely that 75% to 
90% of the students who received additional time outperformed the average student 
receiving only the control amount of instruction. The ddiff of 1.99 indicates that about 
97% of the studies affording more total instructional time to students using the com-
puter-based tools are estimated to yield larger effects than the average study not offer-
ing computer-based students such an advantage. Thus, it is clear that students who 
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TABLE 2
Mixed effects moderator analysis examining the weighted mean  
effect size ds by study descriptor

Study descriptor k d 95% CI p |ddiff| 95% CI (ddiff)

Additional timea,b < .001 1.99 1.03 to 2.94
  Yes   6 0.97 0.66 to 1.29
  No 39 0.23 0.12 to 0.35
Academic levela,b .006 1.08 0.32 to 1.83
  Undergraduate 29 0.25 0.12 to 0.39
  Graduate 10 0.68 0.41 to 0.94
Embedded assessmenta,b .02 0.92 0.09 to 1.75
  Yes   7 0.67 0.36 to 0.99
  No 38 0.26 0.12 to 0.40
Publication type: 
Conference papera,b

.09 0.71 −0.24 to 1.65

  Yes   5 0.04 −0.31 to 0.40
  No 40 0.37 0.23 to 0.52
Implementation of toolb .15 0.47 −0.18 to 1.13
  Replacement 13 0.17 −0.08 to 0.42
  Supplement 32 0.39 0.24 to 0.54
Pretestb .17 0.44 −0.21 to 1.09
  Yes 13 0.19 −0.06 to 0.43
  No 32 0.39 0.23 to 0.55
Course grade assessmenta .24 0.45 −1.26 to 0.36
  Yes   7 0.16 −0.17 to 0.48
  No 38 0.37 0.22 to 0.52
Publication type: Journala,b .31 0.33 −0.32 to 0.98
  Yes 32 0.37 0.22 to 0.53
  No 13 0.23 −0.01 to 0.46
Dedicated assessmenta .35 0.28 −0.86 to 0.31
  Yes 22 0.26 0.06 to 42
  No 23 0.39 0.21 to 0.58
Control of preexisting 
differencesa,b

.36 0.28 −0.34 to 0.90

  Yes 15 0.25 0.04 to 0.46
  No 30 0.37 0.22 to 0.53
Origin of toola .44 0.23 −0.37 to 0.83
  Commercially developed 19 0.39 0.19 to 0.60
  Instructor developed 25 0.28 0.10 to 0.47
Number of sessions .54 0.21 −0.44 to 0.87
  1 13 0.39 0.13 to 0.65
  2+ 30 0.29 0.15 to 0.45
Stand alone vs. 
communicationa

.67 0.17 −0.62 to 0.95

  Stand alone 12 0.40 0.16 to 0.63
  Communication 13 0.33 0.12 to 0.53

(continued)
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Study descriptor k d 95% CI p |ddiff| 95% CI (ddiff)

Distance learninga .64 0.15 −0.51 to 0.82

  Yes 12 0.28 0.03 to 0.53
  No 33 0.35 0.20 to 0.49
Stand-alone toolsa .66 0.15 −0.53 to 0.83
  Yes 12 0.41 0.14 to 0.68
  No 27 0.34 0.17 to 0.51
Stand alone vs. number 
cruncher

.70 0.15 −0.63 to 0.92

  Stand alone 12 0.43 0.11 to 0.74
  Number cruncher 14 0.34 0.06 to 0.63
Publication type: 
Dissertation

.75 0.13 −0.64 to 0.89

  Yes 8 0.38 0.06 to 0.70
  No 37 0.32 0.18 to 0.46
General exam assessment .81 0.09 −0.64 to 0.82
  Yes 9 0.37 0.06 to 0.67
  No 36 0.33 0.17 to 0.48
Web communication 
toolsa

.82 0.07 −0.59 to 0.74

  Yes 13 0.34 0.10 to 0.58
  No 26 0.37 0.19 to 0.55
Number cruncher toolsa .85 0.06 −0.59 to 0.72
  Yes 14 0.34 0.10 to 0.58
  No 25 0.37 0.19 to 0.55
Prior statistical 
background

.87 0.05 −0.58 to 0.67

  Yes 23 0.34 0.13 to 0.59
  No 17 0.31 0.09 to 0.54
Unit of assignmenta .87 0.05 −0.54 to 0.63
  Individual 22 0.32 0.12 to 0.41
  Classroom or group 23 0.34 0.17 to 0.51
Random assignmenta .97 0.01 −0.61 to 0.63
  Yes 16 0.33 0.09 to 0.57
  No 27 0.34 0.17 to 0.51
Number cruncher vs. 
Web communicationa

.99 0.00 −0.75 to 0.76

  Number cruncher 14 0.34 0.09 to 0.59
  Web communication  
      tools

13 0.34 0.09 to 0.59

Note. Total k does not always equal 45 because of missing data. The p value is computed from the Q statistic, 
which gives a two-tailed test when there are two groups.
aStudy descriptor identified as statistically significant (p < .05) under a fixed effects model with un-Winsorized 
effect size weights.
bStudy descriptor identified as statistically significant (p < .05) under a fixed effects model with a single 
Winsorized effect size weight (i.e., 1399.25 changed to 97.76).

Table 2 (continued)
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received computer-based instruction substantially outperformed students who 
received lecture-based instruction when the former received more overall instruction.

Academic level. The confidence interval of each academic level subgroup (CI.95 = 
0.41 ≤ µ ≤ 0.94 for graduates; CI.95 = 0.12 ≤ µ ≤ 0.39 for undergraduates) indicates 
that, regardless of academic level, computer-assisted instruction yields larger 
effects than does non-computer-assisted instruction. Moreover, studies that used 
graduate students yielded a larger mean effect (d = 0.68) than studies with under-
graduate students (d = 0.25); this difference was found to be statistically signifi-
cant, Q(1) = 7.72, p = .006. The ddiff = 1.08 indicates that an estimated 84% of 
studies using graduate students yielded larger effects than the average study using 
undergraduate students. It is apparent that although both academic levels benefit 
from computer-assisted instruction, graduate students seem to benefit more from 
such resources than do undergraduate students.

Embedded assessment. We found an advantage for computer-assisted instruction, 
regardless of whether studies employed an embedded assessment (CI.95 = 0.36 ≤ µ 
≤ 0.99 for embedded assessment; CI.95 = 0.12 ≤ µ ≤ 0.40 for nonembedded assess-
ment). In addition, we found a statistically significant difference between these 
two methods, Q(1) = 5.36, p = .02, indicating that studies making use of embedded 
assessment yield larger effects than those not utilizing embedded assessment. The 
corresponding ddiff (0.92) is clearly robust; an estimated 82% of studies employing 
embedded assessments obtain larger effects than the average study not employing 
embedded assessment. Thus, although both embedded and nonembedded assess-
ments demonstrate a decided gain over lecture-only instruction, instruction that 
includes embedded assessment is associated with greater learning than studies not 
making use of such an assessment approach.

Publication type. We compared three types of publications: journal articles, papers 
stemming from conference presentations, and dissertations. Our findings indicate 
that both journal articles and dissertations report a performance advantage for 
computer-assisted instruction over face-to-face instruction (CI.95 = 0.22 ≤ µ ≤ 0.53 
for journals; CI.95 = 0.06 ≤ µ ≤ 0.70 for dissertations). However, this does not 
appear to be the case for conference papers (CI.95 = –0.31 ≤ µ ≤ 0.40). This differ-
ence becomes even more apparent when comparing the average effect for confer-
ence papers to the collective average effect of journal articles and dissertations, 
Q(1) = 2.69, p = .09; ddiff = .71.

Implementation of tool. The confidence interval of each subgroup (CI.95 = –0.08 ≤ 
µ ≤ 0.42 for replacement; CI.95 = 0.24 ≤ µ ≤ 0.54 for supplement) indicates that the 
advantage of computer-assisted instruction over face-to-face instruction tended to 
be larger when the computer-assisted tool was used to supplement, rather than 
replace, face-to-face instruction. The 13 studies utilizing tools as supplements 
yielded a larger mean effect (d = 0.39) than the 32 studies utilizing such tools as 
replacements (d = 0.17), although this difference was not statistically significant, 
Q(1) = 2.07, p = .15; ddiff = .47. This means that an estimated 68% of studies employ-
ing the computer-aided tools as supplements yielded larger effects than the average 
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study utilizing those tools as replacements. An effect size this large is meaningful, 
suggesting that computer-assisted instruction is likely to be more effective when it 
is used to supplement face-to-face instruction rather than replace it.

Remaining categorical variables. None of the 19 remaining categorical variables 
attained statistical significance as a moderator of the relationship between compu-
ter-based instruction and student performance. However, the average effect size  
d was positive for every subgroup, and both limits of the 95% CI for d were greater 
than zero for virtually all of the subgroups (see Table 2). These data indicate com-
puter-assisted instruction showed a positive effect across a wide range of condi-
tions. The ddiff statistic exceeded 0.15 for 11 of these 19 variables, pointing toward 
several potentially important moderator variables.

Moderator Analysis With Continuous Variables

As described earlier, the authors rated the extent to which each treatment condi-
tion embodied each of 11 attributes such as student engagement, student control 
over the learning process, and the nature of feedback. As shown in Table 3, the 
correlations between these ratings and the observed treatment effect sizes were all 
positive, ranging from .02 to .20, indicating that all of the relationships were in the 
expected direction in this set of studies. Surprisingly, however, no individual 
attribute attained statistical significance. The largest correlations suggested greater 
advantages of computer-assisted instruction for more complex statistical concepts, 
with more rapid feedback, for programs that stimulated more active learning, and 
for programs that used more simulation (see Table 3).

Discussion

Conclusions Regarding Computer-Assisted Statistics Instruction

The average effect size of 0.33 for the 45 studies in this review demonstrates 
that computer-assisted instruction is, on average, more effective than lecture-only 
instruction. Assuming normal distributions within groups, an effect size of 0.33 
indicates that 63% of students receiving computer-assisted instruction in statistics 
demonstrate greater learning than the average student receiving only lecture-based 
instruction. Equivalently, an average student (i.e., 50th percentile) who receives 
computer-assisted instruction in statistics demonstrates greater achievement than 
63% of students who receive only a lecture version of the same material. Moreover, 
the 95% confidence interval for the average effect size ranges from 0.20 to 0.46. 
This confidence interval includes the average effect sizes reported by Hsu (2003) 
and Schenker (2007), 0.43 and 0.24, respectively. Thus, as in previous meta- 
analytic work, these findings demonstrate that computer-assisted instruction has a 
modest yet meaningful, beneficial impact on statistics learning.

The search for characteristics of computer-based instruction that are associated 
with learning outcomes revealed several potential moderators. One such study 
characteristic was the amount of time spent with the learning material. Specifically, 
computer-based treatment groups showed a greater performance advantage over 
lecture-only groups when the former received more overall instruction than the 
latter. The ddiff value of 1.99 (95% CI ranging from 1.03 to 2.94) indicates that the 
effect of additional time is large and potentially very large. Although this finding 
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is not surprising, from a practical standpoint it indicates that extra time spent with 
computer-assisted instruction can be highly beneficial.

The effect of computer-based instruction was significantly larger for graduate 
students than for undergraduates; the ddiff value of 1.08 (95% CI = 0.32 to 1.83) 
also indicates that this effect probably is large. This finding suggests that prior 
knowledge or expertise may be conducive to mastering statistical concepts via 
computer-based statistics learning tools. Previous work has found graduate stu-
dents to possess more favorable attitudes toward computer-assisted instruction 
than undergraduates (Koroghlanian & Brinkerhoff, 2007; Yilmazel-Sahin, 2009); 
it is possible that such perceptions enhance the learning benefits of computer-
assisted instruction. It is also possible that graduate students may be better self-
regulated learners than undergraduate students. Effective self-regulated learning is 
a cyclical process in which the learners must manage, plan, and control their learn-
ing by setting goals and enacting strategies to achieve those goals (Borkowski & 
Burke, 1996; Moos & Azevedo, 2008). Several studies have shown that low 
knowledge learners, who tend not to self-regulate their learning effectively, may 
require more support or scaffolding (Azevedo, 2005; Chen, Fan, & Macredie, 
2006; Moos & Azevedo, 2008). In contrast, learners with high prior domain 
knowledge have demonstrated more planning and monitoring behaviors during 
learning (Moos & Azevedo, 2008). Given their greater educational experience 
compared to undergraduates, graduate students may possess a greater ability to 
implement effective learning strategies and make better use of feedback when 
working computer-based tools.

We also found effect size differences related to the type of outcome measure 
employed by studies. Specifically, we found that embedded assessments  

TABLE 3
Mixed effects moderator analysis examining the correlations between weighted 
effect sizes and learner-centered characteristics

Learner-centered characteristic k r p

Interactivity
  Active learning 41 .16 .28
  Thoughtful responses 43 .10 .49
  Learner control 43 .06 .72
Nature of feedback
  Immediacy of feedback 37 .18 .27
  Targeted feedback 38 .08 .60
Sources of instructional content
  Student–student interaction 41 .13 .39
  Instructor involvement 44 .12 .42
  Technology’s contribution beyond instructor or students 44 .05 .75
Miscellaneous
  Complexity of statistical concepts 45 .20 .16
  Degree of simulation 44 .16 .27
  Breadth or range of statistical topics 45 .02 .91

Note. k does not always equal 45 because of missing data.
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composed of target items contained within a broader assessment (e.g., final exam) 
yielded significantly larger effects than studies not utilizing this assessment 
approach. One possible explanation is that larger effects may be found for items 
more highly linked to the computer-based tool in question. However, there was no 
advantage for studies that used assessment specifically designed to measure the 
learning that was targeted by the computer-based tool (i.e., dedicated assessment). 
Another possibility is that, in the context of embedded assessment, the nontarget 
items enhanced performance on the target items. That is, working through nontar-
get items may prime students to think about the knowledge measured by the target 
items; nontarget items may activate knowledge that is related to the specific 
knowledge under study. For instance, if target items are designed to measure stu-
dents’ understanding of hypothesis testing, exposure to other items on the same 
exam measuring understanding of related concepts such as the sampling distribu-
tion of the mean may activate knowledge that is relevant to performing well on 
measures of hypothesis testing. Recent work has shown how testing can promote 
more effective learning and teaching (Roediger & Karpicke, 2006), but more 
research is needed to determine the best ways to use assessment in the context of 
computer-assisted instruction.

Several additional study characteristics that did not attain statistical signifi-
cance for the test of differences between effect sizes nevertheless showed ddiff 
values and confidence intervals that suggest potential importance. Using com-
puter-based tools to supplement, rather than replace, face-to-face instruction 
tended to yield larger performance gains (ddiff = 0.47, 95% CI = –0.18 to 1.13). 
These findings suggest that students learn best when they are exposed to an instruc-
tional approach that incorporates elements of both face-to-face and computer-
based instruction.

We did not, however, obtain particularly robust findings with regard to the three 
technology types (i.e., stand-alone, number-cruncher, and web-based communica-
tion tools); our findings indicate that all technology types are comparably beneficial 
to learning and that all three hold a performance advantage over lecture-based 
instruction. Although we expected that the added interactivity and engagement 
offered by stand-alone tools would translate into larger effects when compared to 
number crunchers and web-based communication tools, our findings do not support 
this view. It is possible that stand-alone tools do not offer a learning advantage over 
number crunchers or web-based communication tools because they do not offer 
learners the greater degree of interactivity or feedback that is often ascribed to them. 
To examine the issue further, we conducted secondary data analyses to examine the 
possibility that the three types of technology differed on specific learner-centered 
features such as interactivity and feedback. We found that although number crunch-
ers and web-based communication tools did not differ along any of the learner-cen-
tered attributes that we examined, stand-alone tools were found to possess 
significantly higher levels of interactivity (i.e., active learning, thoughtful responses, 
learner control) and feedback (i.e., immediacy of feedback, targeted feedback). All 
p values were less than .05, and effect size d values ranged from 1.04 to 3.17. In 
addition, relative to both number crunchers and web-based communication tools, 
stand-alone tools were significantly more likely to be associated with lower levels of 
instructor involvement (d = 1.67) and offered a significantly greater contribution to 
learning beyond the instructor and students (d = 2.36).
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These robust findings indicate that stand-alone tools possess the key character-
istics most commonly attributed to them—they offer students greater cognitive 
engagement and contribute positively to the overall instructional experience stu-
dents have in courses employing such tools. However, despite this apparent advan-
tage over number crunchers and web-based communication tools, our findings do 
not lend support to the notion that these differences translate into greater learning. 
One possibility is that despite offering students greater interactivity and feedback, 
stand-alone tools’ apparent benefits can be fully harnessed only by proficient 
learners or experts and not by the novice learner (Larreamendy-Joerns & Leinhardt, 
2006; Moos & Azevedo, 2008). That is, the various features that stand-alone tools 
offer may be apparent only to the experienced student and may simply be too 
complex or unclear for the beginning student to take full advantage. Thus, although 
stand-alone tools may serve as the “gold standard” of computer-based resources, 
one must be mindful of the importance of making such tools as clear and accessible 
as possible for novice learners. In light of our finding that tools used to supplement 
rather than replace face-to-face instruction are associated with larger effects, cou-
pled with our finding that all technology types are equally beneficial to learning, 
we are left to conclude that all three types of tools can have a meaningful impact 
on learning when they are used to supplement, rather than substitute, face-to-face 
instruction. Clearly, this is an area of research that merits further examination.

As discussed earlier, previous work suggests that learner-centered characteris-
tics (i.e., interactivity and feedback) substantially account for the benefits that 
students derive from computer-assisted instruction. In contrast, our findings do not 
support the view that the level of implementation of these features has a discern-
able impact on student learning. It is possible that instructional facets, such as 
learner control, interactivity, and feedback, do not underlie (at least to a meaning-
ful degree) the benefits of computer-assisted instruction. Before coming to any 
definitive conclusions, there are two points to consider. First, it should not be 
overlooked that all of our findings are in the direction predicted from previous 
research—although failing to achieve statistical significance, such consistency 
points to potentially meaningful effects that are at least partially obscured by our 
conservative analytical approach. We were able to reliably identify the differences 
in the studies on the basis of these characteristics; however, the fact that these stud-
ies varied along many other characteristics clearly warranted the use of a mixed 
effects procedure, a decidedly conservative approach.

Another point to consider is that none of the studies included in the present 
meta-analysis was designed to test specific learner-centered variables; as a result, 
none offered tightly controlled comparisons to test those variables. Other meta-
analyses that examined feedback also have produced inconclusive findings, sug-
gesting that the effect of feedback may be obscured by variability among other 
factors. For instance, J. Kulik and Kulik (1988) found that immediate feedback 
was more effective than delayed feedback in general. However, they were sur-
prised that there were not more studies relating computer-based instruction and 
feedback timing. They also acknowledged the need for more controlled studies 
exploring variables that may affect the effectiveness of feedback. In this way, our 
findings point to potentially meaningful directions for future research. For instance, 
although our findings do not identify feedback and interactivity as significant 
moderators, it is possible that the effectiveness of feedback is dependent on the 
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learners’ self-regulatory strategies (especially with regard to self-monitoring, goal 
setting, and awareness of how to obtain more information) in using the feedback 
to their advantage (Hattie & Timperley, 2007). Although greater learner control 
may facilitate learning for the highly motivated and skilled students, it may ham-
per learning among those less motivated or those less proficient (Chen et al., 2006; 
Milheim & Martin, 1991). One reason we may not have obtained robust findings 
in examining various instructional features is that their effectiveness is contingent 
on learner characteristics, including self-regulation of learning skills and motiva-
tion. Indeed, prior knowledge may also affect the effectiveness of computer-based 
tools, as suggested by our findings that graduate students gained more from using 
computer-based tools than did nongraduate students.

Previous research has shown that cognitive engagement promoted by interac-
tivity of instruction has a positive effect on the effectiveness of computer-based 
instruction. Bernard et al.’s (2009) meta-analysis showed that both high and mod-
erate levels of student–content interaction were more positively associated with 
achievement than low levels; no such relationships between effect size and stu-
dent–teacher or student–student interactions were found. These findings suggest 
that distance education courses that promote cognitive engagement and active 
learning through design of the content may be particularly effective. Although the 
correlations between learning and interactivity ratings were positive in our meta-
analysis (see Table 3), our findings failed to replicate Bernard et al.’s significant 
findings regarding interactivity. It is unclear whether they used a fixed effects or 
mixed effects model in conducting their moderator analyses, and thus it is difficult 
to determine whether their tests were less conservative than ours. However, their 
significant finding of student–content interactivity (and indirectly active learning) 
may be because of their approach, which may be more sensitive in two respects. 
Instead of merely rating the experimental condition, they rated how the experimen-
tal and treatment conditions differed on each interactivity dimension. Moreover, 
they compared only distance education conditions that differed on some specific 
instructional aspect or aspects rather than comparing distance education with tra-
ditional instruction conditions, which may vary along multiple dimensions. Thus, 
they may have avoided or minimized the high level of heterogeneity observed in 
the current meta-analysis. Bernard et al.’s meta-analysis underscores the impor-
tance of using more sensitive approaches to test the impact of learner-based fea-
tures in computer-assisted instruction by designing studies that focus on the 
specific features of interest. Focused research could provide tests of interactions 
of design features with learner characteristics.

Connection to Previous Findings and Methodological Considerations

The U.S. Department of Education, Office of Planning, Evaluation, and Policy 
Development (2009) meta-analysis comparing face-to-face instruction and online 
learning corroborates several of our key findings. Their average d of 0.24 falls 
within our 95% confidence interval for the average d, from 0.20 to 0.46. Their 
meta-analysis also parallels our findings concerning time spent on learning and the 
use of technology as a supplement to traditional instruction. Instruction that com-
bined both online and face-to-face instruction had an average d of 0.35, larger than 
the average d for purely online instruction, 0.14. When comparing online learners 
who spent more time on instruction than those in the face-to-face condition, the 
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average d was 0.46, greater than the average d of 0.19 observed when comparing 
online learners who spent relatively less time or equal time to learners using tradi-
tional instruction.

In our meta-analysis, studies of higher methodological quality tend to show 
weaker effects than studies of lower quality. Studies that included a pretest aver-
aged smaller effect sizes than those with no pretest (ddiff = 0.44, 95% CI = –0.21 to 
1.09), and studies with statistical control of preexisting differences averaged 
smaller effects than those studies that did not use such control (ddiff = 0.28, 95% CI 
= –0.34 to .90). Papers presented at conferences tended to show weaker effects of 
computer-based tools than publications or dissertations (ddiff = 0.71, 95% CI = 
–0.24 to 1.65), suggesting a publication bias in favor of studies reporting statisti-
cally significant findings. Although these differences did not attain statistical sig-
nificance, the consistent pattern across variables and the moderate to large values 
of ddiff suggest that meaningful effects are more likely than null effects. Mixed 
effects meta-analysis with the current data is not sensitive enough to provide ade-
quately precise estimates of these effect sizes. The U.S. Department of Education, 
Office of Planning, Evaluation, and Policy Development (2009) meta-analysis, 
which employed a mixed effects model for the moderator analysis, also failed to 
find many statistically significant methodological moderators. They examined the 
following six methodological moderators: (a) sample size, (b) knowledge type 
tested, (c) quality of study design, (d) unit of assignment to condition, (e) instruc-
tor equivalence across conditions, and (f) equivalence of curriculum and instruc-
tional approach across conditions. The only significant moderator was whether the 
curriculum and instruction were equivalent between conditions. Effect sizes were 
smaller when the curriculum and instruction were identical or almost identical in 
online and face-to-face conditions (average d = 0.20) than when various instruc-
tional features differed between the two conditions (average d = 0.42). As was the 
case in reviews by Hsu (2003) and Schenker (2007), we also were unable to 
uncover many statistically robust study characteristics associated with achieve-
ment outcomes. Our analyses led us to conclude that the studies that were com-
bined to produce these statistics represent not one but many populations. Indeed, 
the individual studies in this literature vary in so many ways that when they are 
grouped by any one index that we considered, the studies within each group are 
still highly heterogeneous. These studies spanned over three decades and employed 
wide-ranging technologies applied in diverse settings. Furthermore, these studies 
employed a large array of outcome measures: Some used final course grades, oth-
ers used final exams scores, and still others used brief but focused quizzes. Despite 
our efforts at defining relatively homogenous subsets of studies, it is clear that 
there still remains a high degree of heterogeneity within groups of studies.

An analysis of heterogeneity showed that the observed variability among the 
effect sizes is larger than one would expect because of sampling error of students 
alone. Although the significance testing approach to evaluating heterogeneity 
allows one to detect whether heterogeneity is present, it does not provide an index 
of the amount of existing heterogeneity. To address this limitation, Hedges and 
Pigott (2001) suggested a simple measure of heterogeneity: the ratio of the 
between-variance component, τ2, to the observed variance of the weighted mean 
effect size. They offered rules of thumb for interpreting this ratio; specifically, they 
suggested that a ratio of .33 indicates a small degree of heterogeneity, a ratio 
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around .67 indicates a moderate degree of heterogeneity, and a ratio around 1.0 
indicates a large degree of heterogeneity. For the current meta-analysis, this ratio 
is .12 / .19 = .64, reflecting a moderate amount of heterogeneity among the effect 
sizes. This finding further corroborates our conclusion regarding the amount of 
heterogeneity that exists in this area of research.

The observed level of heterogeneity, coupled with the use of a mixed effects 
model, contributes to low statistical power for detecting the effects of moderator 
variables (Hedges & Pigott, 2004). Currently, the vast majority of meta-analyses 
employ a fixed effects approach (Schmidt, 2010; Schmidt, Oh, & Hayes, 2009). In 
fact, of 199 meta-analyses published in Psychological Bulletin as of January 2006, 
only 13 employed a random effects approach (Schmidt et al., 2009). There is a 
recognized bias against conservative methods because studies with statistically 
significant findings are more likely to be published than studies that fail to find 
statistically significant effects (Lipsey & Wilson, 1993). Given that mixed effects 
procedures result in reduced statistical power to identify moderators (the primary 
focus in most meta-analyses), researchers may be leery of employing such tech-
niques for fear that they would undercut the likelihood of publication for their 
findings. This dilemma further strengthens the need to utilize alternative statistical 
indices that are not driven by sample size, such as ddiff. Indeed, our findings point 
to ddiff as a particularly meaningful index that demonstrates the strength of the 
relationship between a given study characteristic (i.e., potential moderator) and the 
study effects. Unlike the hypothesis testing approach that is so often relied on 
when conducting moderator analyses, ddiff is not influenced by the number of iden-
tified studies. A mixed effects approach offers an appropriate model that allows 
generalization of findings to a larger, more representative body of research and, 
coupled with the use of ddiff, is conducive to the identification of representative 
ranges for the effects under study.

Findings Based on a Fixed Versus Mixed Effects Model

Although a mixed effects model is clearly warranted in this area of research, the 
reader may wonder how our findings would differ had we opted in favor of the 
traditionally employed fixed effects procedure. To examine the difference between 
these approaches, we also conducted fixed effects moderator analyses of the cat-
egorical study descriptors shown in Table 2. With fixed effects analyses, 19 of 24 
study descriptors were identified as statistically significant (p < .05). However, the 
effect size weight for one study (1399.25; reported in Hilton & Christensen, 2002) 
was identified as an outlier in a distribution with a mean equal to 50.94 and median 
equal to 15.76. As mentioned earlier, findings stemming from a fixed effects mod-
erator analysis—in contrast to a mixed effects analysis—are greatly influenced by 
the magnitude of effect size weights, which are based on study sample sizes 
(Borenstein et al., 2009; Lipsey & Wilson, 2001). Given the potential bias resulting 
from the inclusion of an extreme outlier in fixed effects analyses, the extreme 
weight was set equal to the second largest observed weight (97.79) and fixed 
effects moderator analyses were conducted a second time. As noted in Table 2, 
fixed effects analyses with Winsorized weights produced statistical significance in 
8 of the 24 categorical descriptors. The pattern of findings with Winsorized weights 
are consistent with our mixed effects findings in that these fixed effects findings 
point to statistical significance (p < .05) among the seven study characteristics with 
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the smallest p values in our mixed effects analyses. These are also the seven study 
characteristics with the largest values of ddiff, ranging from 0.33 to 1.99. To ensure 
that the outlier did not have an undue influence on our mixed effects findings, we 
also reran those analyses with the Winsorized weight. As expected, our mixed 
effects findings with respect to reported effect sizes (d), p values, and confidence 
intervals were essentially unchanged, with only a few small differences at the 
hundredths decimal place.

The fixed effects findings further highlight the differences in statistical power 
associated with the use of fixed versus mixed effects procedures. Although all of 
the fixed effects findings pointed to statistical significance among the categorical 
variables, they also showed statistical significance of the residual pooled within-
group variances. The former indicates that differences exist among the subgroups 
under comparison, establishing them as moderator variables; the latter indicates 
that these moderators do not adequately account for the observed heterogeneity 
among the effect sizes, confirming the need for a mixed effects approach that 
models such heterogeneity (Lipsey & Wilson, 2001). It should be noted that 
although our findings are generally consistent with those obtained by Hsu (2003) 
and Schenker (2007), there are important methodological differences between the 
meta-analyses. First, Hsu employed a fixed effects approach in estimating the 
mean effect size and in conducting the moderator analyses; on the other hand, 
Schenker employed a random effects model in estimating population parameters 
and a mixed effects approach in conducting all moderator analyses. However, 
Schenker also based his findings on 117 effects stemming from 46 studies, com-
promising the statistical independence that should exist between the effect sizes 
under study (Lipsey & Wilson, 2001). Although procedures exist for dealing with 
dependent effect sizes (Cheung & Chan, 2004; Gleser & Olkin, 1994), none was 
employed. Given the pivotal role played by heterogeneity among studies examin-
ing the effectiveness of computer-assisted instruction in statistics, future analyses 
in this area should include an index of heterogeneity, such as the one discussed 
earlier (Hedges & Pigott, 2001).

Conclusions

There is compelling evidence that students using computer-based tools in their 
statistics courses generally demonstrate greater achievement than their peers who 
receive only face-to-face instruction. This conclusion applies to a wide range of 
implementations that vary based on the type of computer-based tool, the concepts 
that are addressed, the measures that are used, and the number of computer-assisted 
sessions. The current meta-analysis provides suggestive evidence regarding vari-
ous potential moderating study characteristics. The observed level of heterogene-
ity across studies highlights the need for more focused studies and greater 
collaboration and consistency in methodological and theoretical approaches to the 
study of features in computer-assisted statistics instruction.

Collectively, work comparing computer-assisted instruction to traditional face-
to-face instruction has demonstrated a performance advantage in favor of technol-
ogy-based learning. Although the current study highlights the need for further 
examination of the factors that account for the achievement differences observed 
between the two instructional approaches, we believe that the field is currently 
undergoing a shift toward research that directly compares different kinds of  
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technological tools. Using technology in the statistics classroom is no longer 
novel; certainly computers are used frequently for computations and presentations 
as well as for communication. Increasingly, instructors are not interested in know-
ing merely whether computer-assisted instruction benefits students; rather, they 
seek to ascertain which instructional tools foster the most learning. This empirical 
shift is apparent in Bernard et al.’s (2009) meta-analysis and is seen among recent 
primary studies specific to statistics education that compare the effectiveness of 
new computer-based instructional tools (viz., stand-alone tools) to more typical 
computer-based tools, such as PowerPoint slides or commercial statistical soft-
ware packages (Christou, Dinov, & Sanchez, 2007; Dinov & Sanchez, 2006; Liu, 
Lin, & Kinshuk, 2010). Such work reflects the understanding that computer-
assisted instruction is now a staple in our statistics education. Given the increased 
emphasis on stand-alone tools and distance learning, research on the role of inter-
activity, engagement, and feedback takes on increased importance as educators 
continue work on improving the efficacy of technology-based statistics instruc-
tion. The high level of heterogeneity among the studies reviewed here suggests that 
research on computer-assisted instruction in statistics would benefit from closer 
collaboration on measurement and design across researchers and more research 
focused closely on specific features of interest.
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