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INTRODUCTION TO ONE-WAY ANALYSIS OF VARIANCE

Dale Berger, Claremont Graduate University    http://wise.cgu.edu 
The purpose of this paper is to explain the logic and vocabulary of one-way analysis of variance (ANOVA).  The null hypothesis tested by one-way ANOVA is that two or more population means are equal.  The question is whether (H0) the population means may equal for all groups and that the observed differences in sample means are due to random sampling variation, or (Ha) the observed differences between sample means are due to actual differences in the population means.

The logic used in ANOVA to compare means of multiple groups is similar to that used with the t-test to compare means of two independent groups.  When one-way ANOVA is applied to the special case of two groups, one-way ANOVA gives identical results as the t-test.

Not surprisingly, the assumptions needed for the t-test are also needed for ANOVA.  We need to assume:  


1)
random, independent sampling from the k populations; 


2)
normal population distributions;


3)
equal variances within the k populations.  

Assumption 1 is crucial for any inferential statistic.  As with the t-test, Assumptions 2 and 3 can be relaxed when large samples are used, and Assumption 3 can be relaxed when the sample sizes are roughly the same for each group even for small samples. (If there are extreme outliers or errors in the data, we need to deal with them first.)  As a first step, we will review the t-test for two independent groups, to prepare for an extension to ANOVA.

Review of the t-test for independent groups

Let us start with a small example.  Suppose we wish to compare two training programs in terms of performance scores for people who have completed the training course.  The table below shows the scores for six randomly selected graduates from each of two training programs.  These (artificially) small samples show somewhat lower scores from the first program than from the second program.  But, can these fluctuations be attributed to chance in the sampling process or is this compelling evidence of a real difference in the populations?  The t-test for independent groups is designed to address just this question by testing the null hypothesis H0: (1 = (2.  We will conduct a standard t-test for two independent groups, but will develop the logic in a way that can be extended easily to more than two groups.
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The first step is to check the data to make sure that the raw data are correctly assembled and that assumptions have not been violated in a way that makes the test inappropriate.  In our example, a plot of the data shows that the sample distributions have roughly the same shape, and neither sample has extreme scores or extreme skew.  The sample sizes are equal, so equality of population variances is of little concern.  Note that in practice you would usually have much larger samples.

We assume that the variance is the same within the two populations (Assumption 3).  An unbiased estimate of this common population variance can be calculated separately from each sample.  The numerator of the variance formula is the sum of squared deviations around the sample mean, or simply the sum of squares for sample j (abbreviated as SSj).  The denominator is the degrees of freedom for the population variance estimate from sample j (abbreviated as dfj).
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   [Formula 1]

For the first sample, SS1 = (102-97)2 + ... + (101-97)2 = 100, and for the second sample, SS2 = 80.  This leads to 
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 = 100/5 = 20, and 
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 = 80/5 = 16.

To pool two or more sample estimates of a single population variance, each sample variance is weighted by its degrees of freedom.  This is equivalent to adding together the sums of squares for the separate estimates, and dividing by the sum of the degrees of freedom for the separate estimates.


Pooled estimate of 
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[Formula 2]
Thus, for our example

     sy2   =   (6-1)(20) + (6-1)(16)   =   100 + 80  =  180  =  18

                   
 (6 + 6 - 2)                    5 + 5      
    10                   

A t-test can be conducted to assess the statistical significance of the difference between the sample means.  The null hypothesis is that the population means are equal (H0: (1 = (2).
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df = (n1 + n2 - 2) = (6 + 6 - 2) = 10.

For a two-tailed t-test with alpha set at .01 and df=10, the tabled critical value is 3.169.  Because the absolute value of the observed t just exceeds the critical value we can reject the null hypothesis (Ho: (1 = (2) at the .01 level of significance. The exact p=.0085. It is unlikely that the population means are equal, or that the population mean for Group 1 is larger than the population mean for Group 2.
An equivalent test of the null hypothesis can be calculated with the F distribution, because t2 with  df = ( is equal to F (df = 1,(). (The Greek letter ( “nu”is often used to represent df for the t-test.) For our example, t2 = (-3.266)2 = 10.67.  From the F table, F(1,10;  .01) = 10.04, so we find that the null hypothesis can just be rejected at the .01 level of significance (p = .0085). This test result is identical to the result of the t test.
ANOVA as a comparison of two estimates of the population variance

In this section we examine a second approach to testing two means for equality.  The logic of this approach extends directly to one-way analysis of variance with k groups.  We can use our data to calculate two independent estimates of the population variance: one is the pooled variance of scores within groups, and the other is based on the observed variance between group means.  These two estimates are expected to be equal if the population means are equal for all k groups (H0: (1 = (2 = …= ( k), but the estimates are expected to differ if the population means are not all the same. 

Within-groups estimate.  Our single best estimate of the population variance is the pooled within groups variance, sy2 from Formula 2.  In our example sy2 = 18, with df = 10.  In ANOVA terminology, the numerator of Formula 2 is called the Sum of Squares Within Groups, or SSWG, and the denominator is called the degrees of freedom Within Groups, or dfWG.  The estimate of the population variance from Formula 2, SSWG/dfWG, is called the Mean Square Within Groups, or MSWG.  Formula 3 is an equivalent way to express and compute MSWG.

Within-groups estimate of (y2 =  
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[Formula 3]
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Between-groups estimate.  If the null hypothesis ((1 = (2) is true and the assumptions are valid (random, independent sampling from normally distributed populations with equal variances), then a second independent estimate of the population variance can be calculated.  As is stated by the Central Limit Theorem, if independent samples of size n are drawn from some population with variance = (y2, then the variance of all possible such sample means 
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 is (y2/n.  We can use our observed sample means to calculate an unbiased estimate of the variance for the distribution of all possible sample means (for samples of size n).  Our estimate of the variance of means is not very stable because it is based on only two scores, 
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 and df = 1, as calculated with Formula 4.
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[Formula 4]

=   (97-101)2 + (105-101)2  =  (-4)2 + (4)2  = 16 + 16 = 32.
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Because 
[image: image18.wmf]2

y

s

 = (y2/n, it follows that (y2 = n
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.  Now we can estimate the variance of the population based on the observed variance of 32 for the sample means.  With our data, where n=6 for each sample, we find sy2 =(n)(
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) = (6)(32) = 192.  This tells us that if we draw samples of size nj = 6 from a population where (y2 = 192, the expected variance of sample means is 
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 = (y2/n = 192/6 = 32.  Thus, if the groups in the population have equal means and variances, we can estimate this common population variance to be 192, because that would account for the observed variance of 32 between our sample means.

Calculation of this second estimate of the population variance using ANOVA notation is shown in Formula 5.  The MSBG is our best estimate of the population variance based only on knowledge of the variance among the sample means.  Formula 5 allows for unequal sample sizes. 


Between-groups estimate of (y2 = 
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[Formula 5]
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Comparing the two estimates of population variance.  The estimate of the population variance based on the variability between sample means (MSBG = 192) is considerably larger than the estimate based on variability within samples (MSWG = 18).  We should like to know how likely it is that two estimates of the same population variance would differ so widely if all of our assumptions are valid and ((1 = (2).  The F ratio is designed to test this question.  (Ho: (12 = (22 )
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[Formula 6]
     

F(1,10)      =      192       =     10.67      (p = .0085)
                               
    18 

The degrees of freedom for the two estimates of variance in Formula 6 are dfBG = k-1 = 2-1 = 1, and dfWG = (n1 + n2 - k) = (6 + 6 – 2) = 10.  Notice that these are exactly the same F ratio and degrees of freedom that we calculated earlier when we converted the t-test to an F-test.

If the null hypothesis and assumptions were true, such that independent random samples were drawn from two normally distributed populations with equal means and equal variances, then it would be very surprising indeed (p<.01) to find that these two estimates of the common population variance would differ so widely.  

We conclude that the null hypothesis and assumptions are not likely all to be true.  If we are confident that our assumptions are OK, then we reject the null hypothesis (H0: (1 = (2 = …= ( k).

More than two groups: One-way ANOVA

The extension to more than two groups is now easy.  Formula 5 and Formula 3 can be used directly to calculate the between-groups and within-groups estimates of the population variance, and Formula 6 can be used to test them for equality.  If the between-groups estimate is significantly larger than the within-groups estimate, we conclude that the population means are unlikely to be equal, or that an assumption of the test has been violated.

Assumptions of the test.  We can expect our calculated level of statistical significance (the p value from the F distribution) to be accurate only if the assumptions required for the test procedure have been satisfied.  Recall the assumptions:  


1) 
observations were randomly and independently chosen from the populations; 


2) 
population distributions are normal for each group; and

3) 
population variances are equal for all groups.

If the sampling was not independent and random, the results of the F-test may be completely spurious.  No statistical procedure will allow strong generalizations to a population if random sampling is not used.  Fortunately, the sampling procedure is generally under the control of the researcher, so faulty sampling as an explanation for a surprisingly large F usually can be ruled out.

Perhaps the best approach to identify serious departures from normality in the shape of the population distributions is to plot the sample distributions and apply the "intraocular trauma test.”  Extreme departures from normality, especially strong skew or outliers, will be apparent.  Admittedly, some practice is needed to calibrate your eyeballs, but a plot is likely to be more useful than summary statistics alone for identifying problems in your data.  Distributions with isolated extreme scores (e.g., three or more standard deviations away from the mean) typically cause more serious problems than smoothly skewed distributions.

There are several ways to deal with extreme scores. Transformations may be useful to reduce the effects of extreme scores (and reduce skew). Sometimes an outlier is caused by an error in coding that can be corrected. Be especially alert for missing data codes that accidentally are used as legitimate data. Sometimes outliers are legitimate scores from cases that are qualitatively different from the population of interest. Such cases should be removed and treated separately. They may be very interesting and important cases, so they should not routinely be ignored. Recent years have seen the development of a number of "robust" methods that are less sensitive to extreme scores. With Winsorized data, some number (g) of scores in each tail of the distribution are set equal to the next most extreme score (the g+1st score from the end). With trimmed data, some proportion of the scores from each tail are discarded. A popular level of trimming is 15% from each end. Hampel and biweight procedures retain all data but give less weight to scores farther from the mean.

Equality of variance can be tested, but there are compelling arguments against using the test to decide whether or not to use ANOVA.  First, ANOVA is little affected by small to moderate departures from homogeneity of variance, especially if the sample sizes are equal or nearly equal.  Second, the tests of homogeneity are more powerful for larger samples than for smaller samples, but ANOVA is less affected by heterogeneity when the samples are larger.  This leads to the awkward situation where the tests of homogeneity are most likely to detect a violation of homogeneity when it least matters.  Third, several of the most commonly used tests of homogeneity are inaccurate for non-normal distributions.  This includes Bartlett's test, F max, and Cochran's C (see Kirk for a discussion of these tests).  Levene's test of homogeneity of variance is less sensitive to departures from normality.  Box (1953) characterized testing for homogeneity before using ANOVA as sending a rowboat out into the ocean to see if it is calm enough for an ocean liner.   

Unequal within-group variances for the different populations is a problem for ANOVA (and the t-test) only when three conditions simultaneously exist – I call this the "triple whammy": 
1) the variances are quite unequal (say a 2:1 ratio or greater); 2) the samples are quite unequal in size (say a 2:1 ratio or greater), and 3) at least one sample is small (say 10 or fewer cases).  In this situation, ANOVA is too liberal (gives false significance) when the smallest samples are taken from the populations with the largest variance.  Conversely, ANOVA is too conservative (fails to detect differences among means) when the smallest samples are taken from the populations with the smallest variance (see Boneau, 1960).  Many statistical packages, including SPSS, provide tests of equality of variance in ANOVA and also ANOVA tests that do not assume equal variance.  

If you suspect that an assumption of ANOVA has been violated in a way that compromises the test, it is prudent to supplement the regular analyses with procedures that are robust to the suspected violation of the assumption.  If both approaches yield the same conclusions, report the results from the standard test and note that the results were confirmed with the robust procedure.  If the results differ, considerable caution is warranted, and the more conservative test is probably appropriate.

Statistical Significance, Practical Significance, and Non-Significance

In recent years, the practice of significance testing of null hypotheses has come under severe criticism (e.g., see an excellent paper by Nickerson, 2000).  This is a topic for another discussion.  For now, keep in mind that failure to reject the null hypothesis does not mean that the null hypothesis is true (it almost certainly is false).  On the other hand, if we reject the null hypothesis, we have not necessarily found a practical or important effect.  It is important to examine plots of the data, and to report means and variances, not just p values from significance tests. 
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